
Refined Morphological Methods of Moment Computation

Tomáš Suk and Jan Flusser
Institute of Information Theory and Automation of the ASCR

Pod vodárenskou věžı́ 4, 182 08 Praha 8, Czech Republic
E-mail: suk@utia.cas.cz, flusser@utia.cas.cz

Abstract

A new method of moment computation based on de-
composition of the object into rectangular blocks is pre-
sented. The decomposition is accomplished by means of
distance transform. The method is compared with ear-
lier morphological methods, namely with erosion de-
composition to squares. All the methods are also com-
pared with direct computation by definition.

1. Introduction

Moments are scalar quantities which have been used
to characterize an image and to capture its significant
features. From the mathematical point of view, mo-
ments are projections of a graylevel function onto a
polynomial basis. Functions of moments, insensitive
to certain group of transformations, are called moment
invariants. Moment invariants have become one of
the most important and most frequently used tools for
object description and recognition. Hundreds of suc-
cessful applications of moment invariants have been re-
ported in literature (see [3], Chapter 8, for a survey).
Even though they suffer from certain intrinsic limita-
tions, moment invariants frequently serve as a reference
method for evaluating the performance of other shape
descriptors.

Geometric moment of a continuous image f(x, y) is
defined as

m(f)
pq =

∞∫

−∞

∞∫

−∞
xpyqf(x, y) dx dy, (1)

where p + q is the order of the moment. If the image
f(x, y) is a discrete one of the size M ×N , then we can
estimate its moment as

m̄(f)
pq =

M−1∑
x=0

N−1∑
y=0

xpyqf(x, y). (2)

Another way is using higher-order approximation of the
integral and/or exact integration of of xpyq over rectan-
gular regions [2].

When applying moment invariants in practice, we
face two important computational issues – stability and
complexity. Stability of moment calculation, particu-
larly avoiding floating-point under/overflow, is ensured
by a choice of proper polynomial (usually orthogonal)
basis, as has been discussed in many papers. Computing
complexity of all invariants is determined by the com-
plexity of moment computation. Having the moments,
we can calculate any invariant in O(1) time. This is why
the algorithms for computing image moments (both of
binary and graylevel images) have attracted such atten-
tion (see [3], Chapter 7, for an overview).

In this paper we deal with binary images because of
their importance in practical pattern recognition appli-
cations. Since any binary object is fully determined by
its boundary, which is supposed to consist of much less
than O(MN) pixels (this assumption may not be nec-
essarily true, see a chessboard), there is a big potential
for an improvement. The methods for fast computa-
tion of the moments of the binary images can be divided
into two groups referred as decomposition methods and
boundary-based methods.

While the boundary-based methods mostly employ
Green’s theorem [4, 6, 10], the decomposition methods
use the following idea. Having a binary object Ω, we de-
compose it into K ≥ 1 disjoint blocks B1, B2, . . . , BK

such that Ω =
⋃K

k=1 Bk. Then

m(Ω)
pq =

K∑
k=1

m(Bk)
pq . (3)

If we can calculate the moment of each block in O(1)
time (as we can for rectangular blocks for instance) then
the overall complexity of m

(Ω)
pq is O(K). If K � MN

the speed-up may be significant.
The power of any decomposition method depends on

our ability to decompose the object into a small number

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.242

970

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.242

970

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.242

966

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.242

966

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.242

966

of blocks in a reasonable time. Individual decompo-
sition methods differ from one another namely by the
decomposition algorithms. Simple algorithms produce
relatively high number of components but perform fast,
while more sophisticated decomposition methods end
up with small number of blocks but require more time.
The complexity of the decomposition must be always
considered as a part of the whole algorithm. Even if
the decomposition is performed only once and can be
used for calculation of all moments, the time needed
for decomposing the image is often so long that it sub-
stantially influences the efficiency of the whole method.
Clearly, the efficiency of the decomposition methods
becomes apparent only if a high number of moments
is required to calculate but this is not the only factor.
Good performance can be achieved only on ”compact”
objects (an example of a compact object is in Fig. 1),
while some images cannot be efficiently decomposed
by any algorithm (a chessboard is an extreme example).

Figure 1. The bear image.

The first method of this kind performed decomposi-
tion into individual rows [16]. Later on, it was general-
ized to row segments [5] and to block of row segments
[14]. Hierarchical quadtree decomposition, proposed in
[15], yields better results but still far from being op-
timal. Morphological decomposition into squares [12]
results in a low number of blocks but performs much
slower than the previous methods.

The goal of this paper is to improve the morpho-
logical decomposition in two ways. We replace time-
consuming erosion by distance transform and general-
ize the method in such a way that it may produce not
only squares but arbitrary rectangles. Thanks to this,
we obtain less final blocks in a shorter time.

2. Morphological Decomposition

The morphological method as was proposed by
Sossa in [12] is based on erosions. The erosion is an

operation, where a small structural element (here 3 × 3
square is used) moves over the image and when the
whole element lies in the object, then the central pixel
of the window is preserved in the object, otherwise it is
assigned to the background. So, each erosion shrinks
the object by one-pixel boundary layer. We repeat it un-
til the whole object disappears and count the number of
erosions s. Then a (2s − 1) × (2s − 1) square can be
inscribed into the object and it forms one block of the
decomposition. This block is removed from the object
and the algorithm is repeated until the whole object is
decomposed into square blocks.

The pixels of the object before the last disappear-
ing erosion are potential centers of the inscribed square.
Theoretically, we can choose one of them randomly, but
the corner pixels provide better odds to more compact
rest of the object. If we find a square 2×2 among them,
a square with size equaling an even number of pixels
can be inscribed into the object. If the potential square
centers create a line segment (with a single or double-
pixel width), then the corresponding squares can be uni-
fied into one rectangle.

It is possible, especially in the last steps of the
method, that several of the identically sized squares
(overlapping as well as non-overlapping) can be in-
scribed into different places of the object. Of course,
it is possible to inscribe and remove one of them, repeat
the erosions, inscribe and remove another one etc. A
better approach is, after inscribing and removing one of
them, to remove the centers of the squares that would
overlap this one and search a center of another block of
this size without repeating the erosions.

Although this method yields good decompositions of
most compact shapes, it is still only sub-optimal even on
simple shapes (see Fig. 2)1.

3. Distance Transform

If the objects is sufficiently compact, i.e. the biggest
inscribed square is bigger than a certain minimum size,
we can speed up the previous algorithm by using dis-
tance transform. In morphological method, we must re-
peat the erosions s-times for finding (2s−1)× (2s−1)
inscribed square, while the distance transform with a
suitable metric can be calculated only once. The dis-
tance transform of a binary image is an image, where
each pixel of an object shows the distance to the nearest
boundary pixel, the background pixels are zero [1].

The distance transform strongly depends on the met-
ric used for the distance measurement. We use a sim-
plified version of the Seaidoun’s algorithm [11] for the

1Thanks to Mirko Navara from the Center for Machine Perception,
Czech Technical University, Prague, for this example.

971971967967967

(a) (b)

(c) (d)

Figure 2. (a) Original binary object,
(b) morphological decomposition into
squares – 51 blocks, (c) morphological
decomposition into rectangles – 5 blocks,
and (d) optimal manual decomposition
into squares – 4 blocks

chessboard metric

d(a, b) = max{|ax − bx|, |ay − by|}. (4)

We successively search the image from left, right, top
and bottom, count distances from the last boundary
pixel and calculate the minimum from the four direc-
tions. The result is the distance transform, the max-
imum of the result equals s for the inscribed square
(2s − 1) × (2s − 1) and the pixels with this maximum
value are possible centers of the inscribed squares.

The computing complexity of this algorithm is
O(MN) in comparison with O(sMN) of the repeated
erosions. However, if s is small (i.e. if the object is
not very compact) the distance transform may be slower
than the erosion. The distance transform with another
metric could be used for decomposition of an object into
blocks of different form.

4. Even-sized Squares and Rectangles

In this Section we explain why even-sized and odd-
sized square blocks must be treated differently. The
original paper [12] did not consider even-sized squares
at all, it only worked with odd-sized ones. If we fol-
lowed this approach here and inscribed an odd-sized

square (2s−1)×(2s−1) whenever an even-sized square
2s× 2s can be inscribed into the object, we would slow
down the algorithm substantially. A better approach is
first to search small squares 2 × 2 among the potential
centers of the squares and only when there are no such
squares, search individual pixels as centers of the odd-
sized squares.

Another solution can be using the erosions by a
structural element 2 × 2 instead of 3 × 3. If we used
e.g. a top-left pixel of the element as the ”central” pixel,
we would obtain top-left pixel of the inscribed square
in the last non-zero layer instead of its center. If we
needed s erosions for zeroing the object, then the size
of the square would be s × s and there would be no
need to differentiate between odd-sized and even-sized
squares. We would need a double number of erosions
for the zeroing but with a smaller structural element.
Slightly longer erosions are partially compensated by
an easier searching of the square centers.

If the potential square centers create a line segment
(with single-pixel or double-pixel width), then the cor-
responding squares can be unified into a rectangle. The
number of blocks is then significantly less, compare
Figs. 2b and 2c. It is a further reduction of the com-
putation time.

Sometimes, the potential square centers create a
form, when a rectangle with both even and odd width
can be inscribed, see Fig. 3. We can use either an even-
sized rectangle (2s + a − 2) × 2s or a more elongated
odd-sized rectangle (2s + a + b − 2) × (2s − 1). We
should choose the bigger one of them. The optimization
in this sense is difficult and we use only a sub-optimal
algorithm for this decision. If we use the erosions 2×2,
this problem cannot occur.

Figure 3. The potential centers of the
squares.

5. Experiments

The kernel function xpyq of the geometric moments
may take very high values for large images and the
moments suffer from the loss of precision. To over-
come this, we use a system of orthogonal polynomials
{τp(x)} instead of xp in the kernel functions. We em-
ploy discrete Chebyshev polynomials [7] in our exper-
iments, because we are able to preserve their precision

972972968968968

even for very high orders of the moments. The partic-
ular choice of polynomial basis does influence neither
the decomposition algorithm itself nor its comparison
to other methods.

We took the image of the size 465× 465 pixels from
Fig. 1 and the chessboard image of the same size and
successively computed all discrete Chebyshev moments
up to certain upper bound r of both indices. The limit
r increased from zero to 464. The moments were com-
puted by a direct calculation from definition, by decom-
position to squares via erosions by 3×3 element (E3×3 –
S), by decomposition to rectangles via erosions by 2×2
element (E2×2 – R), by decomposition to squares via
distance transform (DT – S) and by decomposition to
rectangles via distance transform (DT – R). The compu-
tation times2 of the bear image to the limit r = 200 are
in the graph in Fig. 4. The maximum moment index r
is on horizontal axis, the computation time t in seconds
is on vertical axis. We can see a big expense of the de-

0 50 100 150 200
0

10

20

30

40

t [s] Definition
E3x3 − S
E2x2 − R
DT − S
DT − R

Figure 4. The computation times of the
bear image.

compositions (check t(0)), but as the requested moment
order increases, all decomposition methods outperform
the definition. According to our expectation, the best
results were achieved by distance transform decompo-
sition into rectangles. It is also apparent from the graph
that for any r the distance transform is faster than ero-
sions.

The time graph changes dramatically when we com-
pute moments of the chessboard image, see Fig. 5. The
chessboard image is the worst possible case for decom-
position algorithms. Now the shape of all the curves
is similar, there is almost no difference between the
erosions and the distance transform. Direct calculation

2All the times in this section are related to the code in C++ lan-
guage on a PC with Intel Pentium III 2.5GHz CPU and Windows XP.

0 100 200 300 400 500
0

100

200

300

400

500

r

t [s] Definition
E3x3 − S
E2x2 − R
DT − S
DT − R

Figure 5. The computation times of the
chessboard image.

from the definition exhibits the best performance (note
that we did not summed over zero pixels).

The order r = 464 is required for precise reconstruc-
tion of the image from its moments, where the same
number of moments as pixels is needed. The computa-
tion times in seconds of the same methods for the order
r = 10 (which is usually enough for object recognition)
are in Tab. 1. The time savings in the case of the bear
image and r = 464 is about 50 times comparing the
computation by definition with the rectangles from the
distance transform. The moment values from the differ-
ent methods are not absolutely identical, but their accu-
racy is sufficient for precise reconstruction. The decom-

Table 1. The computation times [s].

method
bear chessboard

r=10 r=464 r=10 r=464
definition 0.13 270 0.28 309
E3×3 – S 8.2 15 0.23 488
E2×2 – R 8.7 11.4 0.23 489

DT – S 2.4 9.2 0.5 495
DT – R 2.5 5.2 0.45 496

positions of the bear image into (a) 1404 squares and
(b) 487 rectangles can be seen in Fig. 6. For a compar-
ison, the chessboard image was decomposed into 108
112 one-pixel blocks.

6. Conclusion

We proposed a new method of decomposition of bi-
nary objects into rectangles. This method was devel-
oped primarily for the fast moment computation but can

973973969969969

find utilization also in other tasks such as lossless com-
pression and object approximation. The method, based
on the distance transform, performs faster than concur-
rent morphological methods. The method, however,
does not provide an optimal decomposition in terms
of the number of rectangles. This decomposition al-
gorithm can be also used, without any modifications,
to calculate orthogonal moments (more precisely, mo-
ments orthogonal on a rectangular region) [9] and mo-
ments of graylevel images. Graylevel image can be ex-
pressed as a union of disjoint binary images, which can
be obtained either as intensity slices [8] or bit planes
[13].

Similarly to other decomposition method, the pro-
posed technique is advantageous only when the object
is compact and the required number of moments is high.
Otherwise the direct calculation from the definition is at
least comparable if not faster.

7. Acknowledgement

This work has been supported by the grant No.
102/08/1593 of the Czech Science Foundation.

References

[1] G. Borgefors. Distance transformations in digital im-
ages. Computer Vision, Graphics, and Image Process-
ing, 34(3):344–371, 1986.

[2] J. Flusser. Refined moment calculation using image
block representation. IEEE Transactions on Image Pro-
cessing, 9(11):1977–1978, 2000.

[3] J. Flusser, T. Suk, and B. Zitová. Moments and Moment
Invariants in Pattern Recognition. Wiley, Chichester,
2009.

[4] X. Y. Jiang and H. Bunke. Simple and fast computa-
tion of moments. Pattern Recognition, 24(8):801–806,
1991.

[5] B. C. Li. A new computation of geometric moments.
Pattern Recognition, 26(1):109–113, 1993.

[6] B.-C. Li and J. Shen. Fast computation of moment in-
variants. Pattern Recognition, 24(8):807–813, 1991.

[7] R. Mukundan. Some computational aspects of discrete
orthonormal moments. IEEE Transactions on Image
Processing, 13(8):1055–1059, 2004.

[8] G. A. Papakostas, E. G. Karakasis, and D. E. Koulou-
riotis. Efficient and accurate computation of geometric
moments on gray–scale images. Pattern Recognition,
41(6):1895–1904, 2008.

[9] G. A. Papakostas, D. E. Koulouriotis, and E. G. Karaka-
sis. A unified methodology for the efficient computation
of discrete orthogonal image moments. Information Sci-
ences, 179(20):3619–3633, 2009.

[10] W. Philips. A new fast algorithm for moment computa-
tion. Pattern Recognition, 26(11):1619–1621, 1993.

(a)

(b)

Figure 6. The decomposition into squares
resulting in 1404 blocks (a) and into rect-
angles resulting in 487 blocks (b).

[11] M. Seaidoun. A fast exact euclidean distance trans-
form with application to computer vision and digital
image processing. PhD thesis, Northeastern University,
Boston, USA, September 1993. Advisor John Gauch.

[12] J. H. Sossa-Azuela, C. Yáñez-Márquez, and J. L. Dı́az
de León Santiago. Computing geometric moments
using morphological erosions. Pattern Recognition,
34(2):271–276, 2001.

[13] I. M. Spiliotis and Y. S. Boutalis. Parameterized real-
time moment computation on gray images using block
techniques. Journal of Real-Time Image Processing,
2009. 11 pages, DOI 10.1007/s11554-009-0142-0.

[14] I. M. Spiliotis and B. G. Mertzios. Real-time compu-
tation of two-dimensional moments on binary images
using image block representation. IEEE Transactions
on Image Processing, 7(11):1609–1615, 1998.

[15] C.-H. Wu, S.-J. Horng, and P.-Z. Lee. A new compu-
tation of shape moments via quadtree decomposition.
Pattern Recognition, 34(7):1319–1330, 2001.

[16] M. F. Zakaria, L. J. Vroomen, P. Zsombor-Murray, and
J. M. van Kessel. Fast algorithm for the computation
of moment invariants. Pattern Recognition, 20(6):639–
643, 1987.

974974970970970

